Laser Safety

LASER LITE: A Quick Overview of Laser Safety 06/09

501 Westwood Plaza, 4th Floor • Los Angeles, CA 90095
Phone: 310-825-5689 • Fax: 310-825-7076 • www.ehs.ucla.edu

THE PRIMARY PURPOSE OF THE UCLA LASER SAFETY PROGRAM IS TO

AVOID GETTING A LASER BEAM IN YOUR EYE

NEVER STARE DIRECTLY AT A LASER BEAM, EVEN WITH PROTECTIVE EYEWEAR

LASER LIGHT
- Maintains strength over long distances
- Produces significant eye hazards at relatively low levels
- Concentrates to a very high intensity when focused by a lens
- Occurs in the Visible and Non-visible spectrum

BIOLOGICAL HAZARDS
- Can be laser beam and non-beam related
- Can occur at all wavelengths
- Occur mainly in the eyes and skin

MOST INJURIES
- Affect the eyes
- Occur during alignment
- Result from operator error

PROTECTION
- Eyewear must be worn for Class 3B and Class 4 laser use
- Eyewear must meet ANSI standards and be marked with Optical Density and Wavelength
- Appropriate skin protection is required for Class 4 lasers

LASER CLASSIFICATION TABLE

CLASS / 1M	Maximum power output is a few microwatts. Visible spectrum output Considered incapable of producing hazardous eye/skin exposure unless viewed with collecting optics (1M). Does not apply to open Class 1 enclosures containing higher-class lasers
CLASS 2 / 2M	Maximum power output is < 1 mW. Visible spectrum output Considered incapable of producing hazardous eye/skin exposure within the time period of human eye aversion response (0.25 s) unless viewed with collecting optics (2M)
CLASS 3R	Maximum power output is 1 mW - < 5 mW. Visible and non-visible spectrum Potentially hazardous under some direct and specular reflection viewing condition if the eye is appropriately focused and stable or if viewed with collecting optics.
CLASS 3B	Maximum power output is 5 mW - < 500 mW Visible and non-visible spectrum Presents a potential eye hazard for intrabeam (direct) or specular (mirror-like) conditions. Presents a significant skin hazard by long-term diffuse (scatter) exposure if higher powered and operating in 200 – 280 nm UVC ranges
CLASS 4	Maximum power output is > 500 mW. Visible and non-visible spectrum Presents potential acute hazards to the eye and skin for all intrabeam and diffused conditions Potential hazard for fire (ignition), explosion and emissions from target or process materials.

EYE DAMAGE - WAVELENGTHS

<table>
<thead>
<tr>
<th>WAVELENGTH</th>
<th>AREA OF DAMAGE</th>
<th>PATHOLOGICAL EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>180 – 315 nm (Ultraviolet UV-B, UVC)</td>
<td>CORNEA; Deep-ultraviolet light causes accumulating damage, even at very low power</td>
<td>Photokeratitis; Inflammation of the cornea, similar to sunburn</td>
</tr>
<tr>
<td>315 – 400 nm (Ultraviolet UV-A)</td>
<td>CORNEA AND LENS</td>
<td>Photochemical cataract; Clouding of the lens</td>
</tr>
<tr>
<td>400 – 780 nm (Visible)</td>
<td>RETINA; Visible light is focused on the retina</td>
<td>Photochemical damage; Damage to retina and retinal burns</td>
</tr>
<tr>
<td>780 – 1400 nm (Near Infrared)</td>
<td>RETINA; Near IR light is not absorbed by iris and is focused on the retina</td>
<td>Thermal damage to cataract and retinal burns</td>
</tr>
<tr>
<td>1400 – 3000 nm (Infrared)</td>
<td>CORNEA AND LENS; IR light is absorbed by transparent parts of eye before reaching the retina</td>
<td>Aqueous flare; Protein in aqueous humor, cataract, corneal burn</td>
</tr>
<tr>
<td>3000 – 10000 nm (Far Infrared)</td>
<td>CORNEA</td>
<td>Corneal burn</td>
</tr>
</tbody>
</table>
LASER OPERATION GUIDELINES

OPERATORS MUST:

- Review **Standard Operating Procedures**, operating and safety instructions and laboratory-specific laser instructions
- **Be trained in laser safety** and specific laser procedures
- Observe all written procedures, **safety rules** and properly use appropriate PPE
- Be **authorized by the Principal Investigator**
- Be **directly supervised** by a person knowledgeable in laser safety
- Wear appropriate PPE, follow safety procedures and SOP’s
- Never circumvent **Administrative or Engineering safety controls**
- Know the location and use of the **power kill switch and fire extinguisher**
- Use the buddy system when working with **high voltage equipment**
- **Not wear reflective metal jewelry** when working with laser beams
- **Never stare directly into a beam** even with eye protection; use indirect viewing
- Give sufficient attention to **non-beam hazards** to prevent possible injury and illness
- Be aware of **plasma and collateral radiation**
- Notify supervisor immediately of potentially hazardous conditions, personal injury, or property damage

IN EACH LAB, PERSONNEL MUST BE ABLE TO OBTAIN:

- **Training** on equipment, procedures and emergency procedures
- **Safety Equipment** that is sufficient in numbers for lab staff, appropriate for the equipment in use and in good operating condition
- **Standard Operational Procedures** for the safe use of all equipment
- Information from the PI or Lab Manager about potential equipment hazards

EMERGENCY INSTRUCTIONS

1. **Shut the laser off immediately** and remove the interlock key. If not possible, alert everyone to **exit the laboratory** and be the last to leave the laboratory

2. If there is a fire, get everyone out of the laboratory immediately. At the same time **shout “FIRE” loudly** and frequently. **Turn on a fire alarm**. Do not try to “fight” the fire from inside the laboratory; do it from the doorway to maintain an escape route

3. In the event of **MAJOR injury**, **Summon Medical Assistance**. Call 911 from a campus phone or 310-825-1491 from a cell phone

4. **Call Security and/or Fire Department (911) as necessary**

5. **Call EHS Hotline (59797) to report the incident**
 Note: ALL incidents must be reported to the Laser Safety Officer

6. **Contact the PI and/or Lab Manager** and describe the emergency