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Physics 6B LabIntroduction

PURPOSE

The laws of physics are based on experimental and observational facts. Laboratory work is therefore
an important part of a course in general physics, helping you develop skill in fundamental scientific
measurements and increasing your understanding of the physical concepts. It is profitable for you to
experience the difficulties of making quantitative measurements in the real world and to learn how
to record and process experimental data. For these reasons, successful completion of laboratory
work is required of every student.

PREPARATION

Read the assigned experiment in the manual before coming to the laboratory. Since each experiment
must be finished during the lab session, familiarity with the underlying theory and procedure will
prove helpful in speeding up your work. Although you may leave when the required work is
complete, there are often “additional credit” assignments at the end of each write-up. The most
common reason for not finishing the additional credit portion is failure to read the manual before
coming to lab. We dislike testing you, but if your TA suspects that you have not read the manual
ahead of time, he or she may ask you a few simple questions about the experiment. If you cannot
answer satisfactorily, you may lose mills (see below).

RESPONSIBILITY AND SAFETY

Laboratories are equipped at great expense. You must therefore exercise care in the use of equip-
ment. Each experiment in the lab manual lists the apparatus required. At the beginning of each
laboratory period check that you have everything and that it is in good condition. Thereafter, you
are responsible for all damaged and missing articles. At the end of each period put your place
in order and check the apparatus. By following this procedure you will relieve yourself of any
blame for the misdeeds of other students, and you will aid the instructor materially in keeping the
laboratory in order.

The laboratory benches are only for material necessary for work. Food, clothing, and other personal
belongings not immediately needed should be placed elsewhere. A cluttered, messy laboratory
bench invites accidents. Most accidents can be prevented by care and foresight. If an accident does
occur, or if someone is injured, the accident should be reported immediately. Clean up any broken
glass or spilled fluids.

FREEDOM

You are allowed some freedom in this laboratory to arrange your work according to your own taste.
The only requirement is that you complete each experiment and report the results clearly in your
lab manual. We have supplied detailed instructions to help you finish the experiments, especially
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the first few. However, if you know a better way of performing the lab (and in particular, a different
way of arranging your calculations or graphing), feel free to improvise. Ask your TA if you are in
doubt.

LAB GRADE

Each experiment is designed to be completed within the laboratory session. Your TA will check off
your lab manual and computer screen at the end of the session. There are no reports to submit.
The lab grade accounts for approximately 15% of your course total. Basically, 12 points (12%) are
awarded for satisfactorily completing the assignments, filling in your lab manual, and/or displaying
the computer screen with the completed work. Thus, we expect every student who attends all
labs and follows instructions to receive these 12 points. If the TA finds your work on a particular
experiment unsatisfactory or incomplete, he or she will inform you. You will then have the option
of redoing the experiment or completing it to your TA’s satisfaction. In general, if you work on the
lab diligently during the allocated two hours, you will receive full credit even if you do not finish
the experiment.

Another two points (2%) will be divided into tenths of a point, called “mills” (1 point = 10 mills).
For most labs, you will have an opportunity to earn several mills by answering questions related to
the experiment, displaying computer skills, reporting or printing results clearly in your lab manual,
or performing some “additional credit” work. When you have earned 20 mills, two more points
will be added to your lab grade. Please note that these 20 mills are additional credit, not “extra
credit”. Not all students may be able to finish the additional credit portion of the experiment.

The one final point (1%), divided into ten mills, will be awarded at the discretion of your TA. He
or she may award you 0 to 10 mills at the end of the course for special ingenuity or truly superior
work. We expect these “TA mills” to be given to only a few students in any section. (Occasionally,
the “TA mills” are used by the course instructor to balance grading differences among TAs.)

If you miss an experiment without excuse, you will lose two of the 15 points. (See below for the
policy on missing labs.) Be sure to check with your TA about making up the computer skills; you
may be responsible for them in a later lab. Most of the first 12 points of your lab grade is based
on work reported in your manual, which you must therefore bring to each session. Your TA may
make surprise checks of your manual periodically during the quarter and award mills for complete,
easy-to-read results. If you forget to bring your manual, then record the experimental data on
separate sheets of paper, and copy them into the manual later. However, if the TA finds that your
manual is incomplete, you will lose mills.

In summary:
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Lab grade = (12.0 points)

− (2.0 points each for any missing labs)

+ (up to 2.0 points earned in mills of “additional credit”)

+ (up to 1.0 point earned in “TA mills”)

Maximum score = 15.0 points

Typically, most students receive a lab grade between 13.5 and 14.5 points, with the few poorest
students (who attend every lab) getting grades in the 12s and the few best students getting grades
in the high 14s or 15.0. There may be a couple of students who miss one or two labs without excuse
and receive grades lower than 12.0.

How the lab score is used in determining a student’s final course grade is at the discretion of the
individual instructor. However, very roughly, for many instructors a lab score of 12.0 represents
approximately B− work, and a score of 15.0 is A+ work, with 14.0 around the B+/A− borderline.

POLICY ON MISSING EXPERIMENTS

1. In the Physics 6 series, each experiment is worth two points (out of 15 maximum points). If
you miss an experiment without excuse, you will lose these two points.

2. The equipment for each experiment is set up only during the assigned week; you cannot
complete an experiment later in the quarter. You may make up no more than one experiment
per quarter by attending another section during the same week and receiving permission from
the TA of the substitute section. If the TA agrees to let you complete the experiment in that
section, have him or her sign off your lab work at the end of the section and record your score.
Show this signature/note to your own TA.

3. (At your option) If you miss a lab but subsequently obtain the data from a partner who
performed the experiment, and if you complete your own analysis with that data, then you
will receive one of the two points. This option may be used only once per quarter.

4. A written, verifiable medical, athletic, or religious excuse may be used for only one experiment
per quarter. Your other lab scores will be averaged without penalty, but you will lose any
mills that might have been earned for the missed lab.

5. If you miss three or more lab sessions during the quarter for any reason, your course grade will
be Incomplete, and you will need to make up these experiments in another quarter. (Note
that certain experiments occupy two sessions. If you miss any three sessions, you get an
Incomplete.)
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Driven Harmonic Oscillator

APPARATUS

• Computer and interface

• Mechanical vibrator and spring holder

• Stands, etc. to hold vibrator

• Motion sensor

• C-209 spring

• Weight holder and five 100-g mass disks

INTRODUCTION

This is an experiment in which you will plot the resonance curve of a driven harmonic oscillator.
Harmonic oscillation was covered in Physics 6A, so we include a partial review of both the underlying
physics and the Pasco Data Studio. We will continue to give fairly detailed instructions for taking
data in this first Physics 6B lab. However, this is the last experiment with detailed instructions on
setting up Data Studio. Henceforth, it will be assumed that you know how to connect the cables
to the computer and to the sensors; how to call up a particular sensor; and how to set up a table,
graph, or digit window for data taking.

THEORY

Hooke’s Law for a mass attached to a spring states that F = −kx, where x is the displacement
of the mass from equilibrium, F is the restoring force exerted by the spring on the mass, and k is
the (positive) spring constant. If this force causes the mass m to accelerate, then the equation of
motion for the mass is

−kx = ma. (1)

Substituting for the acceleration a = d2x/dt2, we can rewrite Eq. 1 as

−kx = md2x/dt2 (2)

or

d2x/dt2 + ω2
0x = 0, (3)

where ω0 =
√
k/m is called the resonance angular frequency of oscillation. Eq. 3 is the differential

equation for a simple harmonic oscillator with no friction. Its solution includes the sine and cosine
functions, since the second derivatives of these functions are proportional to the negatives of the
functions. Thus, the solution x(t) = A sin(ω0t) +B cos(ω0t) satisfies Eq. 3. The parameters A and
B are two constants which can be determined by the initial conditions of the motion. The natural
frequency f0 of such an oscillator is

f0 = ω0/2π = (1/2π)
√
k/m. (4)

5



Physics 6B Lab | Experiment 1

In the simple case described above, the oscillations continue indefinitely. We know, however, that
the oscillations of a real mass on a spring eventually decay because of friction. Such behavior
is called damped harmonic motion. To describe it mathematically, we assume that the frictional
force is proportional to the velocity of the mass (which is approximately true with air friction, for
example) and add a damping term, −b dx/dt, to the left side of Eq. 2. Our equation for the damped
harmonic oscillator becomes

−kx− b dx/dt = md2x/dt2 (5)

or

md2x/dt2 + b dx/dt+ kx = 0. (6)

Physics texts give us the solution of Eq. 6 (and explain how it is obtained):

x(t) = A0e
−bt/2m cos(ω1t+ φ). (7)

The parameter A0 is the initial amplitude of the oscillations, and φ is the phase angle; these two con-
stants are determined by the initial conditions of the motion. The oscillations decay exponentially
in time, as shown in the figure below:

In addition, the angular frequency of oscillation is shifted slightly to

ω1 =
√
k/m− (b/2m)2 =

√
ω2
0 − (b/2m)2. (8)

Now imagine that an external force which varies cosinusoidally (or sinusoidally) in time is applied
to the mass at an arbitrary angular frequency ω2. The resultant behavior of the mass is known as
driven harmonic motion. The mass vibrates with a relatively small amplitude, unless the driving
angular frequency ω2 is near the resonance angular frequency ω0. In this case, the amplitude
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becomes very large. If the external force has the form Fm cos(ω2t), then our equation for the driven
harmonic oscillator can be written as

−kx− b dx/dt+ Fm cos(ω2t) = md2x/dt2 (9)

or

md2x/dt2 + b dx/dt+ kx = Fm cos(ω2t). (10)

The solution of Eq. 10 can also be found in physics texts:

x(t) = (Fm/G) cos(ω2t+ φ), (11)

where

G =
√
m2(ω2

2 − ω2
0)2 + b2ω2

2 (12)

and

φ = cos−1(bω2/G). (13)

The factor G in the denominator of Eq. 11 determines the shape of the resonance curve, which
we wish to measure in this experiment. When the driving angular frequency ω2 is close to the
resonance angular frequency ω0, G is small, and the amplitude of oscillation becomes large. When
the driving angular frequency ω2 is far from the resonance angular frequency ω0, G is large, and
the amplitude of oscillation is small.

This is the curve we wish to measure in the experiment.

THE QUALITY FACTOR

The sharpness of the resonance curve is determined by the quality factor (or Q value), Q. If the
frictional force, measured by the parameter b, is small, then Q is large, and the resonance curve is
sharply peaked. If the frictional force is large, then Q is small, and the resonance curve is broad
(Figure 3).
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The general definition of Q is

Q = 2π × (energy stored) / (energy dissipated in one cycle). (14)

(If the energy dissipated per cycle is small, then Q is large, and the resonance curve is sharply
peaked.) Physics texts derive the relationship between Q and the motion parameters,

Q = mω1/b, (15)

and relate Q to the sharpness of the resonance peak,

Q = ω1/∆ω, (16)

where ∆ω = ωhigh−ωlow is the difference in angular frequencies at which the amplitude has dropped
to 1/

√
2 of its maximum value (see Figure 4). Note that Q also controls the exponential damping

factor, e−bt/2m, in Eq. 7 and Figure 1. Using Eq. 15, we can show that

e−bt/2m = e−ω1t/2Q. (17)

The reciprocal of the factor which multiplies t in the exponent, 2m/b = 2Q/ω1, is the time required
for the amplitude of oscillation to decay to 1/e of its initial value (the so-called “e-folding time”).

EXPERIMENTAL SETUP

This experiment utilizes a signal interface which drives a mechanical vibrator attached to a spring
with a mass. We will measure the position of the mass by echo location using the motion sensor
(sonic ranger).

1. Plug the yellow-banded cable of the motion sensor into digital channel 1 of the signal interface
and the other cable into digital channel 2. From the mechanical vibrator, plug the red and
black wires into the output of the signal interface.

2. Turn on the signal interface and the computer.
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3. Call up PASCO Capstone. Click on “Hardware Setup” to display the interface. Click on
channel 1 of the interface and select “Motion Sensor II”. Click on the yellow circle at the
output of the interface. This will add the Output Voltage-Current Sensor.

4. Click on “Signal Generator”. Set Waveform to Sine, set Frequency to 10 Hz, and set Ampli-
tude to 1 V.

5. Click the “On” switch in the signal generator window, and check that the mechanical vibrator
stem is shaking. Experiment with the up and down arrows to adjust the frequency and
amplitude of the vibrations. You can also click on the number itself and type the desired
value. Then click “Off”.

PROCEDURE PART 1: FINDING THE NATURAL FREQUENCY

1. Attach a C-209 spring with a total mass of 450 g (400-g mass + 50-g mass holder) to the
vibrator stem. Place the motion sensor on the floor under the mass-spring system.

2. In the following procedures, be very careful not to drop masses onto the motion sensor. Secure
the spring holder firmly to the vibrator stem. If the vibrations become large, they might shake
a mass loose. Do not leave masses unattended on the spring; set them aside immediately when
you stop taking measurements for a while.

3. Select the “Text & Graph” option on Capstone. Click on the “Select Measurement” button
on the y-axis of the graph. Under Motion Sensor II, click on “position”.

4. Make sure the signal generator switch is “Off” in its window. With your hand, set the mass
gently vibrating, click “Record”, then “Stop” after approximately 15 seconds.

5. To zoom in on your data, click on the “Scale axes to show all data” button above the graph
(square with a red arrow pointing diagonally).

6. Check that you are obtaining clear oscillations on the graph. If not, adjust the positions of the
motion sensor and spring vibrator accordingly. You can delete experimental runs by clicking
the drop down arrow next to “Delete Last Run”. Record a clear set of 12 – 15 oscillations.

7. Note a set of 10 clear oscillations on your graph. Record the time at the beginning of the
oscillations and the time at the end of 10 complete oscillations. The frequency (number of
oscillations per second) is equal to 10 divided by the time required for 10 complete oscillations.

8. Repeat the procedure above three times, and record the average frequency. (This is sometimes
called the natural frequency.)

PROCEDURE PART 2: PLOTTING THE RESONANCE CURVE

In this section, you will verify that resonance occurs when a driving force is applied at the natural
frequency of the oscillator.
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1. Set the frequency of the signal generator to your measured natural frequency and the ampli-
tude to approximately 1 V. Click the “Auto” box on the signal generator window. This will
automatically turn the generator on when the “Record” button is clicked and switch it off
when “Stop” is clicked.

2. Set the mass at rest, and click “Start”. Observe the oscillations building up. Make sure they
do not get too wild; if so, stop and reduce the amplitude of the signal generator, and start
again.

3. Take all your measurements below at the same driving amplitude. First, locate the resonance,
set a reasonable driving amplitude, and proceed with measurements on either side of the
resonance. (You may find that the oscillations build up and later decay. This is fine. When
you are not exactly on resonance, the driven oscillations are “beating” against the natural
frequency. At resonance, the amplitude builds up to a large value and remains there. The
pattern above is a “transient” which will decay eventually (at least in the ideal case).)

4. Change the frequency by small steps until you locate the resonance exactly, and record the
amplitude of oscillation with the frequency in the “Data” section.

5. When taking your measurements, expand the y-scale by clicking and dragging on the y-axis,
read off the extremes of the oscillations at their maximum amplitude (as in the illustration
above), and record the values in the “Data” section. The difference of the two extreme
numbers is, of course, the peak-to-peak amplitude of oscillation. Compute this amplitude,
and record it in the “Data” section. Be sure your mass is exactly at rest before starting a
run.

6. Take measurements at different frequencies until you have a series of measurements (say, 10
or more) which cross the resonance, and continue on either side far enough so the oscillations

10



Physics 6B Lab | Experiment 1

are quite small compared to the maximum at resonance. Use small frequency steps with the
up and down arrows near the resonance to map it accurately and obtain a nice smooth curve.
You can adjust the number of decimal places by clicking on the left and right arrows near the
frequency setting.

7. When you have a good series of measurements across the resonance, make a careful plot of
the resonance curve in Excel. Always title your graph and label the axes. Show your work
to the TA. You have completed the required part of the experiment. The next steps result in
varying degrees of additional credit.

DATA

Procedure Part 1:

8. Frequency (Trial 1) =

Frequency (Trial 2) =

Frequency (Trial 3) =

9. Average frequency =

Procedure Part 2:

5. Amplitude =

Frequency =

6. Maximum position =

Minimum position =

Peak-to-peak amplitude =

7. Maximum positions =
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Minimum positions =

Peak-to-peak amplitudes =

8. Plot the resonance curve using Excel. Remember to label the axes and title the graph.
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ADDITIONAL CREDIT PART 1: FINDING THE SPRING CONSTANT (2
mills)

We determined the spring constant k for springs several times in the Physics 6A lab by using a
meter stick and a set of masses, entering the measurements into Excel, and finding the slope of the
line.

Here is an alternate method. Use the motion sensor to take the position measurements. Get rid
of any previous data runs by clicking the drop down arrow under “Delete Last Run” and clicking
“Delete All Runs”. Drag a table symbol over to your work space. Click the “Select Measurement”
button and choose “Position”. Make sure that the Signal Generator is in the “Off” setting and not
“Auto”.

Change the recording mode from “Continuous Mode” to “Keep Mode” at the bottom of the screen.
Start with only one of the five masses on the hanger. With the spring system still directly above
the motion sensor, click “Preview”. With the mass at rest, click the “Keep Sample” button. Add
another mass and click the “Keep Sample” button again. Do this until you have values recorded
for 5 different masses. Click the “Stop” button.

Use these 5 values of position and the five masses you used to make a plot of force vs displacement.
Use Excel to do a best-fit line to your data and determine the slope. How is the slope of your
graph related to the spring constant? You will need to use the correct units of force (Newtons) to
get k in the proper units. You could either convert each mass entry into units of force and make
your keyboard entries in Newtons, or just proceed with mass in units of kilograms and make the
conversion of units at the end when you read the slope from the curve-fitting routine. In your work,
make clear which method you are using.

Slope of line =

Spring constant k =

ADDITIONAL CREDIT PART 2: PREDICTING THE RESONANCE FRE-
QUENCY (1 mill)

If there were no friction, the resonance frequency would be

f0 = ω0/2π = (1/2π)
√
k/m. (4)

Compute this value of f0, and compare it with your measured value of the resonance frequency.
Record your results clearly.

f0 (computed from Eq. 4 ) =

f0 (measured) =

Percentage difference in f0 =
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ADDITIONAL CREDIT PART 3: THE QUALITY FACTOR AND FRICTION
(2 mills)

We saw that

Q = ω1/∆ω, (16)

where ∆ω = ωhigh−ωlow. Compute the value of Q for your mass on a spring by finding the angular
frequencies on your resonance curve where the amplitude has dropped to 1/

√
2 of its maximum

value.

Q is also equal to mω1/b, by Eq. 15. By approximating ω1 as ω0, estimate the value of b. Then
compute the true resonance angular frequency, including friction, from

ω1 =
√
k/m− (b/2m)2. (8)

What is the percentage difference between ω1 and ω0? Could your measurements of the resonance
curve have distinguished between ω1 and ω0?

ωhigh =

ωlow =

Q =

b =

ω1 =

Percentage difference between ω1 and ω0 =
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Standing Waves

APPARATUS

• Computer and interface

• Mechanical vibrator

• Clip from vibrator to string

• Three strings of different densities

• Meter stick clamped vertically to measure vibration amplitudes

• Weight set

• Acculab digital scale

INTRODUCTION

Have you ever wondered why pressing different positions on your guitar string produces different
pitches or sounds? Or why the same sound is produced by pressing certain positions on two or
more strings? By exploring several basic properties of standing waves, you will be able to answer
some of these questions. In this experiment, you will study standing waves on a string and discover
how different modes of vibration depend on the frequency, as well as how the wave speed depends
on the tension in the string.

THEORY: FORMATION OF STANDING WAVES

Consider a string under a tension F with its ends separated by a distance L. Figure 1 depicts a
complex wave on the string, which could be produced by plucking the string or drawing a bow
across it.

We will see that a complex wave such as this can be constructed from a sum of sinusoidal waves.
Therefore, this focus of this experiment is on sinusoidal waves.
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Figure 2 shows a wave traveling along the x-axis. The equation describing the motion of this
wave is based on two observations. First, the shape of the wave does not change with time (t).
Second, the position of the wave is determined by its speed in the x direction. Based on these
observations, we see that the vertical displacement of the wave (y) is a function of both x and t.
Let y(x, t = 0) = f(x), where f(x) represents the function that characterizes the shape of the wave.
Then y(x, t) = f(x − vt), where v is the speed of the wave. Although this description holds true
for all traveling waves, we will limit our discussion to sinusoidal waves.

The vertical displacement of the traveling sinusoidal wave shown in Figure 2 can be expressed as

y(x, t) = A sin[(2π/λ)(x− vt)], (1)

where A is the amplitude of the wave (i.e., its maximum displacement from equilibrium) and λ
is the wavelength (i.e., the distance between two points on the wave which behave identically).
Expanding the term inside the brackets gives

y(x, t) = A sin(2πx/λ− 2πvt/λ). (2)

By substituting λ = vT , k = 2π/λ, and ω = 2π/T (where T is the period, k is the angular
wavenumber, and ω is the angular frequency), we obtain

y(x, t) = A sin(kx− ωt). (3)

As t increases, the argument of the sine function (kx− ωt) decreases. In order to obtain the same
value of y at a later time, x must also increase, which implies that this wave travels to the right.
Conversely, the argument (kx+ωt) represents a wave traveling to the left. When the right-traveling
wave of Figure 2 reaches a fixed end of the string, it will be reflected in the opposite direction.
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The right-moving incident wave, y1, generates a left-moving reflected wave, y2, with the same
amplitude:

y1(x, t) = A sin(kx− ωt) (4)

y2(x, t) = A sin(kx+ ωt). (5)

The resultant wave, y3, which is the sum of the individual waves, is given by

y3(x, t) = y1(x, t) + y2(x, t) = A sin(kx− ωt) +A sin(kx+ ωt). (6)

We can rewrite Eq. 6 by using the trigonometric identity:

A sin(α) +A sin(β) = 2A sin[(α+ β)/2] cos[(α− β)/2] (7)

y3(x, t) = 2A sin(kx) cos(ωt). (8)

Note that the x and t terms are separated such that the resultant wave is no longer traveling. Eq. 8
shows that all particles of the wave undergo simple harmonic motion in the y direction with angular
frequency ω, although the maximum amplitude for a given value of x is bounded by | 2A sin(kx) |.
If we fix the two ends of the string and adjust the frequency so that an integral number of half
waves fit into its length, then this standing wave is said to be in resonance.

The fixed ends impose a boundary condition on the string; its amplitude at the ends must be zero
at all times. Thus, we can say that at x = 0 and x = L (where L is the length of the string),

y3(x = 0, t) = y3(x = L, t) = 0 (9)

2A sin(k · 0) cos(ωt) = 2A sin(kL) cos(ωt) = 0 (10)

or

sin(kL) = 0. (11)
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Eq. 11 is a boundary condition which restricts the string to certain modes of vibration. This
equation is satisfied only when kL = nπ, where n is the index of vibration and is equal to any
positive integer. In other words, the possible values of k and λ for any given L are

kL = (2π/λ)L = nπ (n = 1, 2, 3, . . .) (12)

or

λ = 2L/n. (13)

Figure 4 shows the mode with index n = 4: the fourth harmonic. The positions at which the
vibration is small or zero are called nodes, while the positions where the vibration is largest are
called antinodes. The number of antinodes is equal to the index of vibration and to the ordinal
rank of the harmonic (fourth, in the case above). Figure 5 shows several other modes of vibration.
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Note that wavelength = 2×(string length between supports)/n, where n = mode number (or index)
= number of antinodes.

THEORY: PROPERTIES OF STANDING WAVES

The wave speed (v) depends on two quantities — frequency (f) and wavelength (λ) — which are
related by

v = fλ. (14)

A wave is created by exciting a stretched string; therefore, the speed of the wave also depends on
the tension (F ) and the mass per unit length of the string (µ). Physics texts give us the derivation
of the wave speed:

v = (F/µ)1/2. (15)

By combining Eqs. 13, 14, and 15, we can express the frequency as

f = v/λ = (n/2L)v = (n/2L)(F/µ)1/2. (16)

When a wave travels from one medium to another, some of its properties change (e.g., speed and
wavelength), but its frequency remains fixed. For example, consider the point where two strings
of different densities are joined. If the two strings have different frequencies, then the two sides
of the point would oscillate at their own frequencies, and the point would no longer be a “joint”.
Mathematically speaking, the function describing the string would not be continuous at the “joint”.
The constancy of the frequency allows us to determine the wave speed and wavelength in a different
medium, if the frequency in that medium is known.

EXPERIMENTAL SETUP

Set up the equipment as shown in Figure 6. Adjust the vibrator clamp on the side to position it
firmly in the vertical orientation. Run one end of the string from a vertical bar past the vibrator
and over the pulley. The vibrator is connected to the string with an alligator clip. Attach a mass
hanger to the other end of the string. Throughout this experiment, you will be changing both the
density of the medium (by using different strings) and the tension (by using different weights). To
measure vibration amplitudes, it is helpful to have a meter stick clamped vertically near the string.

1. Turn on the signal interface and the computer.

2. Call up Capstone. Under “Hardware Setup”, click on the output channels of the interface to
connect the mechanical vibrator. Under “Signal Generator”, click on “SW750 Output”.
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3. Note that a sine wave has already been selected. We will use only sine waves in this experi-
ment. Set the amplitude and frequency of the signal generator initially to approximately +2
V and 20 Hz, respectively. Then click “On”. You should see the string vibrate. Adjust the
frequency to observe the multiple harmonics of the standing wave. Remember that you can
obtain frequency steps of various sizes by clicking on the up and down arrows. Click the right
and left arrows to adjust the size of these steps.

PROCEDURE: PART 1

In this section, we will keep the tension and density of the string constant to find experimentally
the relationship between frequency and number of antinodes.

1. Adjust the frequency until you obtain a nice standing wave with two antinodes (n = 2).
Record this frequency in the “Data” section.

2. Obtain and record the frequencies for consecutive n values. Take at least six measurements,
starting with the fundamental mode.

3. Calculate and record the wavelength, Eq. 13, and wave speed, Eq. 14, corresponding to each
n.

4. Plot a graph of frequency as a function of n. What is the relationship between the two
variables?

PROCEDURE: PART 2

In this section, we will keep n constant and change the weights to find the relationship between
frequency and tension.

1. Choose one of the three strings. If you like to see data that agrees well with theory, choose
the finest string. If you would rather see more interesting data, for which you might need to
explain the discrepancy, choose the most massive string. Measure and record the linear mass
density (µ = M/L) of the string by obtaining its total mass M and total length L. Use the
digital scale to weigh the string. Keep all units in the SI system (kilograms and meters).
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2. Using the 50-g mass hanger, measure and record the frequency for the n = 2 mode. (Note:
You may choose any integer for n, but remember to keep n constant throughout the rest of
this section.)

3. Add masses in increments of 50 g, and adjust the frequency so that the same number of nodes
is obtained. Take and record measurements for at least six different tensions.

4. The wave speed should be related to the tension F and linear mass density µ by v = (F/µ)1/2.
Calculate and record the wave speed in each case using Eq. 14, and plot v2 as a function of
F/µ. (You have calculated v2 from the frequency and wavelength; these are the y-axis values.
You have calculated F/µ from the measured tension and linear mass density; these are the
x-axis values. Be sure to convert the tension into units of Newtons.) You now have the
experimental points.

5. Now plot the “theoretical” line v2 = F/µ. This is a straight line at 450 on your graph, if you
used the same scale on both axes. Do your experimental and theoretical results agree well?
If not, what might be the reasons?

PROCEDURE: PART 3

In this section, we will determine the relationship between frequency and the density of a medium
through which a wave propagates.

1. Measure the linear mass densities (µ = M/L) of the two other strings as described above.

2. Keeping the tension and mode number constant at, say, 100 g and n = 2, measure and record
the frequencies for the three strings.

3. Calculate and record the “experimental” wave speed from the frequency and wavelength for
each string density.

4. Calculate and record the “theoretical” wave speed for each string density from v = (F/µ)1/2,
and compare these speeds with the experimental values.

DATA

Procedure Part 1:

1. Frequency (n = 2 mode) =

2. Frequency (n = 1 mode) =

Frequency (n = 2 mode) =

Frequency (n = 3 mode) =

Frequency (n = 4 mode) =
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Frequency (n = 5 mode) =

Frequency (n = 6 mode) =

3. Wavelength (n = 1 mode) =

Wave speed (n = 1 mode) =

Wavelength (n = 2 mode) =

Wave speed (n = 2 mode) =

Wavelength (n = 3 mode) =

Wave speed (n = 3 mode) =

Wavelength (n = 4 mode) =

Wave speed (n = 4 mode) =

Wavelength (n = 5 mode) =

Wave speed (n = 5 mode) =

Wavelength (n = 6 mode) =

Wave speed (n = 6 mode) =

4. Plot the graph of the frequency as a function of n using one sheet of graph paper at the end
of this workbook. Remember to label the axes and title the graph.

Procedure Part 2:

1. Mass of string 1 =

Length of string 1 =

2. Frequency (with 50-g mass) =

3. Frequency (with 100-g mass) =

Frequency (with 150-g mass) =

Frequency (with 200-g mass) =

Frequency (with 250-g mass) =

Frequency (with 300-g mass) =

Frequency (with 350-g mass) =
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4. Wave speed (with 50-g mass) =

Wave speed (with 100-g mass) =

Wave speed (with 150-g mass) =

Wave speed (with 200-g mass) =

Wave speed (with 250-g mass) =

Wave speed (with 300-g mass) =

Wave speed (with 350-g mass) =

Plot the experiment graph of v2 as a function of F/µ using one sheet of graph paper at the
end of this workbook. Remember to label the axes and title the graph.

5. Plot the theoretical graph of v2 as a function of F/µ using the same sheet of graph paper.
Remember to label the axes and title the graph.

Procedure Part 3:

1. Mass of string 2 =

Length of string 2 =

Mass of string 3 =

Length of string 3 =

2. Frequency (string 1) =

Frequency (string 2) =

Frequency (string 3) =

3. Experimental wave speed (string 1) =

Experimental wave speed (string 2) =

Experimental wave speed (string 3) =

4. Theoretical wave speed (string 1) =

Theoretical wave speed (string 2) =

Theoretical wave speed (string 3) =

Percentage difference between experimental and theoretical speeds (string 1) =
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Percentage difference between experimental and theoretical speeds (string 2) =

Percentage difference between experimental and theoretical speeds (string 3) =

ADDITIONAL CREDIT PART 1 (1 mill)

Carefully write out a complete answer to the question posed at the beginning of the experiment:
Why does pressing different positions on your guitar string produce different pitches?

ADDITIONAL CREDIT PART 2 (2 mills)

As you tune the frequency, there is a resonance of sorts at each higher mode of vibration. That
is, as you tune the frequency, the amplitude of vibration is very large when you are at the correct
frequency for the mode, but becomes smaller as you move away from the correct frequency, until
you begin to approach the frequency of the next mode. The response might look similar to the
graph below.

We want to measure the quality factor, Q, of one of these resonances and study how the oscillations
decay. Refer to the discussion of Q in Experiment 1.

Choose a mode of vibration where you can get a nice large amplitude (e.g., n = 2, with 200 g on
the heavy string). Clamp a vertical meter stick near one of the antinodes so you can measure the
amplitude of vibration. Measure carefully near the resonance maximum, and record the frequencies
on either side of resonance when the amplitude has fallen to 1/

√
2 of its maximum value. Using

Q = ω1/∆ω = f1/∆f, (Eq. 16 in Experiment 1)

where f = ω/2π, determine Q from your measurements.

24



Physics 6B Lab | Experiment 2

As discussed in Experiment 1 in connection with its Eq. (16), Q also controls the damping rate
of the vibration. Start the wave motion until it builds up to full amplitude. Then switch off the
driving vibrator, and observe the wave motion decay. Measure the full amplitude Amax of vibration
at resonance by reading off distances from the meter stick while the vibrator is driving the wave,
and calculate Amax/e (e = 2.718 . . .). Devise a way to note this reduced amplitude on the meter
stick.

Start the wave again at full amplitude, switch off the drive, and measure the time required for the
amplitude to decay to Amax/e (the so-called “e-folding time”). Compare this time with 2Q/ω1 =
Q/πf1, and record the results below.

Amplitude at resonance (Amax) =

Amax

√
2 =

Frequencies at which amplitude is equal to Amax

√
2 =

Difference in frequencies (∆f) =

Q =

Amax/e =

Time required for amplitude to decay to Amax/e =

2Q/ω1 =
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Electrostatics

APPARATUS

• Heat lamp

• Timer

• Two Lucite rods

• Rough plastic rod

• Silk

• Cat fur

• Stand with stirrup holder

• Pith balls on hanger

• Electroscope

• Electrophorus

• Coulomb’s Law (charging pads not needed)

INTRODUCTION

This experiment consists of many short demonstrations in electrostatics. In most of the exercises,
you do not take data, but record a short description of your observations. If high-humidity condi-
tions prevent you from completing certain parts, you may try them again next week with the Van
de Graaff experiments.

THEORY

The fundamental concept in electrostatics is electrical charge. We are all familiar with the fact that
rubbing two materials together — for example, a rubber comb on cat fur — produces a “static”
charge. This process is called charging by friction. Surprisingly, the exact physics of the process of
charging by friction is poorly understood. However, it is known that the making and breaking of
contact between the two materials transfers the charge.

The charged particles which make up the universe come in three kinds: positive, negative, and
neutral. Neutral particles do not interact with electrical forces. Charged particles exert electrical
and magnetic forces on one another, but if the charges are stationary, the mutual force is very
simple in form and is given by Coulomb’s Law:

FE = kqQ/r2, (1)

where FE is the electrical force between any two stationary charged particles with charges q and Q
(measured in coulombs), r is the separation between the charges (measured in meters), and k is a
constant of nature (equal to 9×109 Nm2/C2 in SI units).
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The study of the Coulomb forces among arrangements of stationary charged particles is called
electrostatics. Coulomb’s Law describes three properties of the electrical force:

1. The force is inversely proportional to the square of the distance between the charges, and is
directed along the straight line that connects their centers.

2. The force is proportional to the product of the magnitude of the charges.

3. Two particles of the same charge exert a repulsive force on each other, and two particles of
opposite charge exert an attractive force on each other.

Most of the common objects we deal with in the macroscopic (human-sized) world are electri-
cally neutral. They are composed of atoms that consist of negatively charged electrons moving in
quantum motion around a positively charged nucleus. The total negative charge of the electrons
is normally exactly equal to the total positive charge of the nuclei, so the atoms (and therefore
the entire object) have no net electrical charge. When we charge a material by friction, we are
transferring some of the electrons from one material to another.

Materials such as metals are conductors. Each metal atom contributes one or two electrons that
can move relatively freely through the material. A conductor will carry an electrical current. Other
materials such as glass are insulators. Their electrons are bound tightly and cannot move. Charge
sticks on an insulator, but does not move freely through it.

A neutral particle is not affected by electrical forces. Nevertheless, a charged object will attract a
neutral macroscopic object by the process of electrical polarization. For example, if a negatively
charged rod is brought close to an isolated, neutral insulator, the electrons in the atoms of the
insulator will be pushed slightly away from the negative rod, and the positive nuclei will be attracted
slightly toward the negative rod. We say that the rod has induced polarization in the insulator, but
its net charge is still zero. The polarization of charge in the insulator is small, but now its positive
charge is a bit closer to the negative rod, and its negative charge is a bit farther away. Thus, the
positive charge is attracted to the rod more strongly than the negative charge is repelled, and there
is an overall net attraction. (Do not confuse electrical polarization with the polarization of light,
which is an entirely different phenomenon.)
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If the negative rod is brought near an isolated, neutral conductor, the conductor will also be
polarized. In the conductor, electrons are free to move through the material, and some of them
are repelled over to the opposite surface of the conductor, leaving the surface near the negative rod
with a net positive charge. The conductor has been polarized, and will now be attracted to the
charged rod.

Now if we connect a conducting wire or any other conducting material from the polarized conductor
to the ground, we provide a “path” through which the electrons can move. Electrons will actually
move along this path to the ground. If the wire or path is subsequently disconnected, the conductor
as a whole is left with a net positive charge. The conductor has been charged without actually
being touched with the charged rod, and its charge is opposite that of the rod. This procedure is
called charging by induction.
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THE ELECTROSCOPE

An electroscope is a simple instrument to detect the presence of electric charge. The old electro-
scopes consisted of a box or cylinder with a front glass wall so the experimenter could look inside,
and an insulating top through which a conducting rod with a ball or disk (called an electrode) on
top entered the box. At the bottom of the rod, very thin gold leaves were folded over hanging down,
or perhaps a gold leaf hung next to a fixed vane. Gold was used because it is a good conductor
and very ductile; it can be made very thin and light. When charge was transferred to the top, the
gold leaves would become charged and repel each other. Their divergence indicated the presence
of charge.

A modern electroscope such as the one used in your experiments consists of a fixed insulated vane,
to which is attached a delicately balanced movable vane or needle. When charge is brought near
the top electrode, the movable vane moves outward, being repelled by the fixed vane.

ELECTROSTATICS AND HUMIDITY

We are all familiar with the fact that cold, dry days are “hot” for electrostatics, and we get small
shocks after walking across a rug and touching a door knob, or sliding across a car seat and touching
the metal of the car door. If the humidity is fairly low on the day of your lab, the experiments will
proceed easily. If the humidity is extremely low, as is often the case in Southern California, you
will probably not escape the lab without a direct experience with electrostatics! If the humidity
is high, as it is sometimes in the summer, the experiments are more difficult, and some may be
impossible.
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If the experiments are difficult on the first week of the electrostatics lab, they will be left up so you
can try some of them with the Van de Graaff experiments in the following lab.

When the air is humid, a thin, invisible film of water forms on all surfaces, particularly on the
surfaces of the insulators in the experiment. This film conducts away the charges before they have
a chance to build up. You can ameliorate this effect somewhat by shining a heat lamp on the
insulators in the apparatus. Do not bring the heat lamp too close, or the insulators will be melted.

EXPERIMENTS

I. EFFECT OF HUMIDITY

Equipment

• Lucite rod

• Silk cloth

• Electroscope

• Timer

Procedure

1. Record your observations in writing either on the computer (e.g., in Microsoft Word) or
on your own paper. If writing by hand, write clearly, legibly, and neatly so that anyone,
especially your TA, can read it easily. Start each observation with the section number
and step number (e.g., I-2 for the step below). You do not need to repeat the question.
Not all steps have observations to record.
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2. Record in your notes the relative humidity in the room (from the wall meter) and the
inside and outside temperature.

3. For this experiment, do not shine the flood lamp on the electroscope. Be prepared to
start your timer. You may use the stopwatch function of your wristwatch.

4. Rub the lucite rod vigorously with the silk cloth. Use a little whipping motion at the end
of the rubbing. Touch the lucite rod to the top of the electroscope. Move the rod along
and around the top so you touch as much of its surface to the metal of the electroscope
as possible. Since the rod is an insulator, charge will not flow from all parts of the rod
onto the electroscope; you need to touch all parts (except where you are holding it) to
the electroscope. Start your timer immediately after charging the electroscope.

5. Record the time it takes the electroscope needle to fall completely to 0◦. Time up to
five minutes, if necessary. If the needle has not fallen to 0◦ after five minutes, record
an estimate of its angle at the five-minute mark. Typically, after charging, the needle
might be at 80◦.

6. If the electroscope needle falls to 0◦ in a few minutes, the heat lamp will help in the
experiments below. If the needle falls to 0◦ in 15 seconds or so, as it does on some
summer days, you will probably have difficulty completing the experiments, even with
the help of the heat lamp. If this is the case, you can try again next week.

II. ATTRACTION AND REPULSION OF CHARGES

In this section, you will observe the characteristics of the two types of charges, and verify
experimentally that opposite charges attract and like charges repel.

Equipment

• Two lucite rods

• One rough plastic rod
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• Stand with stirrup holder

• Silk cloth

• Cat’s fur

Procedure

1. Charge one lucite rod by rubbing it vigorously with silk. Place the rod into the stirrup
holder as shown in Figure 7.

2. Rub the second lucite rod with silk, and bring it close to the first rod. What happens?
Record the observations in your notes.

3. Rub the rough plastic rod with cat’s fur, and bring this rod near the lucite rod in the
stirrup. Record your observations.

For reference purposes, according to the convention originally chosen by Benjamin Franklin,
the lucite rods rubbed with silk become positively charged, and the rough plastic rods rubbed
with cat’s fur become negatively charged. Hard rubber rods, which are also commonly used,
become negatively charged.

III. PITH BALLS

In this section, you will observe the induced polarization of a neutral insulator and the transfer
of charge by contact.

Equipment

• Hanger with pith balls

• Lucite rod

• Rough plastic rod

• Silk cloth

• Cat’s fur
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Procedure

(The heat lamp may help to minimize humidity near the pith balls.)

1. Touch the pith balls with your fingers to neutralize any charge.

2. Charge the lucite rod by rubbing it with silk.

3. Bring the lucite rod close to (but not touching) the pith balls. Observe and record what
happens to the balls. Explain your results. (Refer to the theory section, if necessary.)

4. Touch the pith balls with your finger to discharge them. Recharge the lucite rod with
silk.

5. Touch the pith balls with the lucite rod. (Sometimes it is necessary to touch different
parts of the rod to the balls.) Then bring the rod near one of the balls. What happens?
Record and explain your results.

6. Charge the rough plastic rod with cat’s fur. How does the plastic rod affect the pith
balls after they have been charged with the lucite rod? Record your results.

IV. CHARGING BY INDUCTION

Equipment

• Electroscope

• Lucite rod

• Rough plastic rod

• Silk cloth

• Cat’s fur
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Procedure

1. Charge the lucite rod by rubbing it with silk.

2. Bring the lucite rod near (but not touching) the top of the electroscope, so that the
electroscope is deflected.

3. Remove the lucite rod. What happens? Record the results your notes. Use several
sentences and perhaps a diagram or two to explain the behavior of the charges in the
electroscope.

4. Bring the lucite rod near the electroscope again so that it is deflected. Hold the rod in
this position, and briefly touch the top of the electroscope with your other finger. Keep
the rod in position. What happens? Record the results in your notes.

5. Now remove the lucite rod. If you have done everything correctly, the electroscope should
have a permanent deflection. Diagram in your notes what happened with the charges.
(Refer to the theory section, if necessary.)

6. With the electroscope deflected as a result of the operations above, bring the charged
lucite rod near the electroscope again. Remove the lucite rod, and bring a charged rough
plastic rod near the electroscope. What happens in each case? Record the results in
your notes.

V. ELECTROPHORUS

The electrophorus is a simple electrostatic induction device invented by Alessandro Volta
around 1770. Volta characterized it as “an inexhaustible source of charge”. In its present

34



Physics 6B Lab | Experiment 3

form, the electrophorus consists of a lucite plate on which rests a flat metal plate with an
insulating handle.

The lucite plate is positively charged by being rubbed with silk. Because lucite is an insulator,
it remains charged until the charge leaks off slowly. The metal plate does not pick up this
positive charge, even though it rests on the lucite. The plate actually makes contact with
the lucite in only a few places; and because lucite is an insulator, charge does not transfer
easily from it. Instead, when you touch the metal plate, electrons from your body (attracted
by the positive lucite plate) flow onto the metal plate. Your body thus acts as an “electrical
ground”. The metal plate is negatively charged by induction. Because the positive charge is
not “used up”, the metal plate can be charged repeatedly by induction.

Equipment

• Electrophorus

• Silk cloth

• Electroscope

• Neon tube

Procedure

(The heat lamp shining on the equipment may improve its operation.)

1. Charge the electrophorus lucite plate by rubbing it with silk. A whipping motion toward
the end of the rubbing may help. Usually the lucite needs to be charged only once for
the entire experiment.

2. Place the metal plate on the center of the lucite plate, and touch it with your finger.
(You may feel a slight shock.)

3. Hold the metal plate by its insulating handle as far from the metal as possible. Bring
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the metal to within 2 cm of your knuckle, and then slowly closer until a (painless) spark
jumps.

4. Recharge the metal plate by placing it back on the lucite, touching the lucite, and then
lifting the plate off with its insulating handle. Bring it near your lab partner’s knuckle.

5. Repeat the procedure until you have experienced several sparks. What is the average
distance a spark will jump? Record this distance in your notes.

6. Recharge the metal plate, and bring it slowly near the top of the electroscope. Observe
what happens with the electroscope needle.

7. Move the plate away from the electroscope, and record what happens with the electro-
scope needle. Is it still deflected? Why or why not?

8. Recharge the metal plate, and actually touch it to the top of the electroscope. Set the
metal plate aside. Observe what happens with the electroscope needle. Is there any
difference in the behavior of the needle compared to the results in procedure 6? If so,
how do you account for the difference? Record this explanation in your notes.

9. Once again, recharge the metal plate. Hold one end of the neon tube with your fingers,
and bring the metal plate slowly closer to the other end. Observe what happens with
the neon tube. The induced current should create a brief flash of light. By grounding
the end of the tube with your fingers, you are providing a pathway for the charges to
move.

10. In this section, you charged the lucite plate by rubbing it at the beginning, and were
then able to charge the metal plate repeatedly. Where does the charge on the metal
plate come from? Where does the energy that makes the sparks and lights the tube
come from? Comment in your notes.

VI. COULOMB’S LAW

You will be testing the inverse r-squared dependence of Coulomb’s Law with a very simple
apparatus. There is a tall box containing a hanging pith ball covered with a conducting
surface, and similar pith balls on sliding blocks. A mirrored scale permits you to determine
the position of the balls. (The purpose of the closed box is to minimize the effects of air
currents.)
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The displacement d of the hanging ball from its equilibrium position depends on the electrical
force F which repels it from the sliding ball. The force triangle of Figure 10 gives

tanφ = F/mg, (2)

while the physical triangle of the hanging ball gives

sinφ = d/L. (3)

If the angle φ is small, then tanφ = sinφ, and d is proportional to F . Therefore, to demon-
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strate the inverse r-squared dependence of Coulomb’s Law, we need to measure the displace-
ment as a function of the separation between the centers of the balls.

The purpose of the mirror is to minimize parallax errors in reading the scale. For example, to
measure to position of the front of the hanging ball, line up the front edge of the ball with its
image. Your eye is now perpendicular to the scale, and you can read off the position. Figure
11 below shows the situation where your eye is still too high and to the right.

Equipment

• Coulomb’s Law apparatus

• Electrophorus

• Silk cloth

Procedure

1. Take a moment to check to position of the hanging ball in your Coulomb apparatus.
Look in through the side plastic window. The hanging ball should be at the same height
as the sliding ball (i.e., the top of the mirrored scale should pass behind the center of the
hanging pith ball, as in Figure 12 below). Lift off the top cover and look down on the
ball. The hanging ball should be centered on a line with the sliding balls. If necessary,
adjust carefully the fine threads that hold the hanging ball to position it properly.

2. Charge the metal plate of the electrophorus in the usual way by rubbing the plastic base
with silk, placing the metal plate on the base, and touching it with your finger.

3. Lift off the metal plate by its insulating handle, and touch it carefully to the ball on the
left sliding block.

4. Slide the block into the Coulomb apparatus without touching the sides of the box with
the ball. Slide the block in until it is close to the hanging ball. The hanging ball will be
attracted by polarization, as in Section III of this lab. After it touches the sliding ball,
the hanging ball will pick up half the charge and be repelled away. Repeat the procedure
if necessary, pushing the sliding ball up until it touches the hanging ball.
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5. Recharge the sliding ball so it produces the maximum force, and experiment with pushing
it toward the hanging ball. The hanging ball should be repelled strongly.

6. You are going to measure the displacement of the hanging ball. You do not need to
measure the position of its center, but will record the position of its inside edge. Remove
the sliding ball and record the equilibrium position of its inside edge that faces the
sliding ball, which you will subtract from all the other measurements to determine the
displacement d.

7. Put the sliding ball in, and make trial measurements of the inside edge of the sliding ball
and the inside edge of the hanging ball. The difference between these two measurements,
plus the diameter of one of the balls, is the distance r between their centers. Practice
taking measurements and compare your readings with those of your lab partner until
you are sure you can do them accurately. Try to estimate measurements to 0.2 mm.

8. Take measurements, and record the diameter of the balls (by sighting on the scale).

9. Remove the sliding ball, and recheck the equilibrium position of the inside edge of the
hanging ball.

10. You can record and graph data in Excel or by hand (although if you work by hand, you
will lose the opportunity for 2 mills of additional credit below). Recharge the balls as in
steps 1 – 4, and record a series of measurements of the inside edges of the balls. Move
the sliding ball in steps of 0.5 cm for each new measurement.

11. Compute columns of displacements d (position of the hanging ball minus the equilibrium
position) and the separations r (difference between the two recorded measurements plus
the diameter of one ball).

12. Plot (by hand or with Excel) d versus 1/r2. Is Coulomb’s Law verified?
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13. For an additional credit of 2 mills, use Excel to fit a power-law curve to the data. What
is the exponent of the r-dependence of the force? (Theoretically, it should be −2.000,
but what does your curve fit produce?)

14. For your records, you may print out your Excel file with a table and graph of your
numerical observations and any other electronic files you have generated.

ADDITIONAL CREDIT (3 mills)

You can change the charge on the sliding ball by factors of two, by touching it to the other uncharged
sliding ball (ground it with your finger first). The balls will share their charge, and half the charge
will remain on the first ball (assuming the balls are the same size). This way, you can obtain
charges on the first ball of Q, Q/2, Q/4, and so forth.

Devise and execute an experiment to verify the dependence of the Coulomb force on the value of
one of the charges. (That is, we want to show that the force is proportional to one of the charges.)
The method is up to you; explain your plan and results in your notes. What should you plot against
what? Does anything need to be held constant?
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Van de Graaff

APPARATUS

• Heat lamp

• Electroscope

• Lucite rod and silk

• Van de Graaff generator

• Grounding sphere

• Ungrounded sphere

• Faraday cage

• Faraday pail

• Plastic box to stand on

INTRODUCTION

In this experiment, we will continue our study of electrostatics using a Van de Graaff electrostatic
generator. If the electrostatics experiments were difficult because of humidity during the previous
week, we will intersperse some of them with the experiments this week.

ELECTRIC FIELD

Consider an electric charge exerting forces on other charges which are separated in space from the
first charge. How can one object exert a force on another object with which it is not in contact?
How does the force move across empty space? Does it travel instantaneously at infinite speed or
at some finite speed?

In the 19th century, physicists suggested the beginning of a solution to these questions. Instead of
imagining that the charge produces forces on other charges directly, they imagined that the charge
fills the surrounding space with an electric field. When other charges are inside the electric field,
they experience electrical forces.

Electric fields can be visualized clearly by imagining that a small positive test charge is carried
around, and the direction and strength of the force exerted on the charge are mapped. Think first
about mapping the electric field of a single stationary positive charge. As we move the test charge
around, the force is always directed radially outward from the stationary charge, and its strength
decreases with distance from the stationary charge. If we draw arrows in the direction of the force,
with lengths proportional to the strength of the force, we obtain a picture of the electric field similar
to this:
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These lines provide a very convincing picture of electric fields. Look at the fields surrounding two
unlike charges (which attract each other) and two like charges (which repel each other):

The electric field itself is defined as the force exerted on a test charge divided by the value of test
charge. By dividing out the charge, we are left with only the properties of space around the charge:

(electric field) = (force on a test charge q)/q (1)

or

E = F/q. (2)

The field lines begin on positive charges and end on negative charges (or at infinity if the system
is not overall neutral). Keep in mind that the lines do not necessarily represent the path a test
charge would follow if released, but rather, the direction and strength of the force on a stationary
test charge. That is, the direction of the force is along the field line passing through the test charge,
and the strength of the force is proportional to the density of field lines near the charge. (Actually,
the electric field is proportional to the number of field lines penetrating a unit area centered on the
point of interest. Lots of field lines indicate a strong force.)

Imagine several positive and negative charges situated in space. The space around the charges is
filled with field lines. These field lines start on the positive charges; the positive charges are the
“sources” of the lines. The field lines end on negative charges; negative charges are the “sinks” of
the lines. If there are more positive than negative charges in the region of space we are examining,
then some of the field lines leave the area completely, moving to infinity. If negative charges
predominate, then some of the field lines come in from infinity. This is the picture: field lines
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filling space, starting on positive charges; or coming in from far away, ending on negative charges;
or disappearing into the distance.

The introduction of the electric field concept seems to be an unnecessary complication at first, but
physicists eventually discovered that the equations of electricity and magnetism are simpler when
written in terms of fields than in terms of forces. The culmination of this process was reached
around 1870 with the completion of Maxwell’s equations.

ELECTRIC POTENTIAL

Since an electric field exerts forces on charges in it, there is potential energy associated with the
position of a charged particle in the electric field, just as a massive object has potential energy
in the gravitational field of the Earth. Imagine that we hold a positive charge fixed in position,
and we bring in a small positive test charge (different from the fixed positive charge) from afar.
As we move the positive test charge in, it is repelled by the fixed charge, and we must exert a
force on the test charge to bring it closer. A force exerted though some distance performs work:
we must do work on the test charge to move it closer. This work goes into increasing the electric
potential energy of the test charge, just as the work done in lifting an object goes into increasing its
gravitational potential energy. The electric potential energy can be converted into kinetic energy
by releasing the test charge. The test charge flies away, gaining kinetic energy in the process.

We would like to introduce a quantity related to potential energy which depends only on the
properties of the charge, so we divide out the test charge and write

(potential) = (potential energy)/(charge) (3)

or

V = U/q. (4)

This relationship defines a new quantity: the electric potential V . Potential is energy per charge
and is measured in joules per coulomb (also known as volts, with unit symbol V). These are the
same volts used in measuring the voltage of a battery. Understanding how the potential energy of
an electric field is related to the voltage of a 6-V battery is one of the difficult conceptual leaps of
electricity and magnetism. While you are trying to assimilate it, remember that as you learn new
concepts in physics, it is important to keep the basic definitions in mind. If a battery is rated at 6
volts, then it is prepared to give 6 joules of energy to every coulomb of charge that is moved from
one of its terminals to the other. For example, if we wire the filament of a small light bulb to the
battery so that charge is moved through the filament, the energy goes into heating the filament
“white hot”.

GAUSS’ LAW

Certain results in this lab can be understood most easily on the basis of Gauss’ Law. Gauss’
Law is an important reformulation of Coulomb’s Law, which makes easier the derivation of some
interesting consequences of electrostatics, such as the fact that all charge placed on a conductor
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moves to its outside surface. Gauss’ Law can be expressed as a surface integral of the electric field:∫
E · dA = qin/ε0. (5)

The surface integral is called the flux of the electric field, and is evaluated over any closed surface.
The charge qin is the total charge enclosed within the surface, and ε0 is the constant in Coulomb’s
Law:

F = kqQ/r2 = qQ/4πε0r
2 (6)

with k = 1/4πε0.

We now derive Coulomb’s Law from Gauss’ Law. Let’s start with an isolated charge q, and draw
an imaginary sphere of radius r centered on the charge. This sphere is an example of a Gaussian
surface.

Here the electric field is always perpendicular to the imaginary sphere, and has the same constant
value E at all points on the surface. Thus, the surface integral is simply the electric field E
multiplied by the surface area 4πr2 of the sphere:∫

E ·dA = E ·
∫

dA = E(4πr2) = qin/ε0 = q/ε0. (7)

This gives us the electric field of the charge q at a distance r:

E = q/4πε0r
2. (8)

Since the force on a test charge Q due to this electric field is F = QE, we have F = qQ/4πε0r
2 —

which is Coulomb’s Law! In this sense, Gauss’ Law is a reformulation of Coulomb’s Law in terms
of the electric field. It seems unnecessarily complicated, but you will see that we can immediately
derive some interesting results with Gauss’ ideas.

You can conceptualize Gauss’ Law in terms of field lines by noting that the integral
∫
E ·dA over a

surface is proportional to the number of field lines penetrating the surface (regardless of the angle
between these lines and the surface). If field lines are entering and exiting the surface, then the
flux integral is proportional to the number of lines exiting minus the number of field lines entering.

Here is an example. Imagine a closed surface of any shape (a Gaussian surface) enclosing a volume
of space with possibly some charges inside. Let us find the net flux

∫
E · dA through this surface.
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If the surface encloses a positive charge and an equal negative charge, then some of the field lines
from the positive charge may leave and then reenter the surface, heading for the negative charge.
The contribution to the net flux from the field lines exiting and then reentering is zero.

For this situation of equal positive and negative charges, the net flux is zero, because every field
line that leaves later reenters. (Note that this is true no matter how the Gaussian surface is shaped
or positioned, as long as it encloses both charges. If there are charges outside the surface, then
their field lines will enter and later exit the surface, so the contribution from these charges is zero.)

∫
E ·dA = 0 for no net enclosed charge. (9)

In fact, if the imaginary Gaussian surface encloses an unknown amount of charge, we can calculate
the net flux

∫
E ·dA and multiply by ε0 to obtain the charge inside: q = ε0

∫
E · dA. (If there is

a net entry of field lines, then
∫
E · dA will be negative, and the equation above shows how much

negative charge is enclosed by the surface.) Our first conclusion from Gauss’ Law is that if we draw
an imaginary closed surface, measure or compute the flux through the surface, and multiply by
ε0, we obtain the net charge (positive minus negative) enclosed by the surface. If the total charge
inside the Gaussian surface is zero, then no field lines can exit (that do not reenter later).

Now suppose we take a solid conductor — a chunk of metal — and dump some charge (say, a few
billion electrons) on it. The charge will spread out over the conductor until equilibrium is reached
and the electrons no longer move. (The movement of the charges takes place in a tiny fraction of
a second.)
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First, note that there are no field lines anywhere inside the conductor. Why? Field lines represent
forces on charges. If there were a field line inside the conductor, then charge would move. By
definition, charge is always free to move in a conductor. But the charge has stopped moving; it
must have arranged itself so that there are no field lines inside the conductor. Now draw a Gaussian
surface just inside the surface of the conductor. No field lines penetrate this surface, so according
to Gauss’ Law, there is no net charge inside the surface (that is, inside the conductor). Under
static conditions, all of the (excess) charge resides on the outer surface of the conductor. This is
our second conclusion from Gauss’ Law. Of course, it is not too surprising. Loosely speaking, the
bits of charge repel one another, and they move as far away from each other as possible to the outer
surface. We will see this effect in one of the following experiments.

Now consider a hollow conductor of any shape. A hollow metal sphere is an example, although the
shape need not be regular. Again, if charge is placed on the conductor, all of it will move to the
outside surface.

A Gaussian surface inside the metal, between its outside and inside surface and entirely in the
conductor, has no field lines penetrating it; thus, there is no field in the conductor. Any surface
inside the cavity has no net field lines exiting it, so no charge is enclosed. Thus, there is no electric
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field inside the cavity. (Strictly speaking, you need another law of electrostatics in addition to
Gauss’ Law to complete the proof that there is no electric field inside a cavity, devoid of charges,
in a conductor. See The Feynman Lectures, Volume II, Section 5 – 10.)

When a volume of space is enclosed by a conductor, there is no static electric field penetrating it
from the outside. The conductor shields the inner space. This is a very practical example of the
standard advice about remaining inside an automobile during a lightning storm. The automobile
encloses its occupants with metal. Even if the automobile is itself struck by lightning and the
occupants are touching its inner surface, the occupants will not be harmed or even shocked. It does
not matter that the metal surface of the automobile is broken by the non-conducting windows. A
small electric field may penetrate a short distance at the windows, but the nearly complete metal
surface of the automobile shields the interior very well. A wire mesh cage will effectively shield its
interior, as long as the mesh hole size in not particularly large compared to the size of the whole
cage. We will try a shielding experiment below. Gauss’ Law has other interesting consequences,
but we now move to a description of the experimental apparatus.

THE VAN DE GRAAFF GENERATOR

The Van de Graaff Generator is a common electrostatic machine which produces voltages of 100,000
V or more on its sphere. Voltage is a measure of energy per unit charge. High voltages can be
estimated roughly by how far they will make a spark jump in air. Static charges that jump a
centimeter or so, as with the electrophorus, involve 10,000 – 30,000 V. With the Van de Graaff
machine, sparks may jump as far as 15 cm. Even though the voltage is high, the total charge
transferred is so small that little pain is felt if one of these sparks reaches your body.
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The Generator consists of a vertical rubber belt revolving around two rollers. The belt delivers
charge to a large insulated metal sphere. One roller is typically covered with wool, and the other
with neoprene. The making and breaking of contact between the rubber belt and the rollers
generates a static charge, which imparts to the roller and belt opposite signs of charge. The two
different roller materials are chosen so that one roller becomes positively charged and the other
negatively charged. Let us imagine that the lower roller becomes positively charged. The right
side of the belt will become negatively charged as a consequence, and some negative charges will
be carried up the belt. This is not where the majority of the negative charges come from, however.
Instead, the negative charges are induced from the brush onto the belt.

Near both rollers are brushes. The brushes are comb-like arrangements of metal points near,
but not in contact with, the rubber belt near the rollers. The lower brush is connected to the
electrical ground through the third wire of the power cord. The ground — planet Earth — is a
gigantic reservoir of electrical charge, both positive and negative. Small amounts of charge can
be transferred to and from the Earth without significantly “charging it up”. The positive roller
attracts negative charges (electrons) from the ground by induction; these charges flow onto the belt
and stick there, since the belt is an insulator. The belt then carries the negative charges to the
upper roller, which has been negatively charged by the friction of the belt. The negative charges
are thus repelled onto the upper brush, where they are conducted out to the Van de Graaff dome.

You might initially think that negative charge would not continue to build up on the dome as it
is repelled by the additional charge. But Gauss’ Law guarantees that any charge delivered to the
inside of the sphere moves to its outer surface. Thus, the upper brush does not charge up, and the
belt can continue to deliver charge up to the sphere, where it accumulates until the air around the
sphere starts to “break down” and the charge leaks off into the surrounding air.

CAUTIONS IN THE USE OF THE VAN DER GRAAFF GENERATOR

If the Generator sparks directly to your body, it produces a slightly painful sting, but not a
dangerous shock. Anyone who has worked with these machines has received several of these shocks.
To reduce the number of shocks you receive, keep all parts of your body a meter away from the
sphere. When turning the machine on or off, touch the grounding sphere to the Generator sphere,
or hold the grounding sphere or wire with the hand that you reach up to the switch. Be sure the
Generator sphere has been touched with the grounding sphere after you turn it off; the sphere may
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stay charged for many minutes.

On a cold dry day when electrostatics is powerful, charge will actually flow through the air and
get on you and any equipment nearby. If you get charged up, sparks will jump from you to the
ground when you came near various objects. Continually hold a grounding wire to prevent this
from happening. You may need to ground carefully the other equipment to prevent spurious results
in your experiments. On a good day, you are almost certain to receive some small shocks.

EXPERIMENTS

I. TEST THE EFFECT OF HUMIDITY AGAIN

Equipment

• Lucite rod

• Silk cloth

• Electroscope

• Timer

Procedure

1. Record below the readings of the relative humidity in the room (from the wall meter)
and the inside and outside temperature.

Humidity =

Inside temperature =

Outside temperature =

2. For this experiment, do not shine the flood lamp on the electroscope. Be prepared to
start your timer. You may use the stopwatch function of your wristwatch.
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3. Rub the lucite rod vigorously with the silk cloth. Use a little whipping motion at the end
of the rubbing. Touch the lucite rod to the top of the electroscope. Move the rod along
and around the top so you touch as much of its surface to the metal of the electroscope
as possible. Since the rod is an insulator, charge will not flow from all parts of the rod
onto the electroscope; you will need to touch all parts (except where you are holding it)
to the electroscope. Start your timer immediately after charging the electroscope.

4. Record the time it takes the electroscope needle to fall completely to 0◦. Time up to
five minutes, if necessary. If the needle has not fallen to 0◦ after five minutes, record
an estimate of its angle at the five-minute mark. Typically, after charging, the needle
might be at 80◦.

II. VAN DE GRAAFF PARAMETERS

The 10-cm spheres on insulating rods are surprisingly expensive and easily dented. Please
take care that they do not roll off the table and fall on the floor.

Equipment

• Van de Graaff Generator

• Grounded discharge sphere

• Wire ring with “lightning rod”

• Insulating stand
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Procedure

1. Devise a way to measure the radius (r) of the Van de Graaff sphere.

r =

2. Hold the grounded sphere (the one attached to the Van de Graaff Generator base by
a wire) by its insulating handle, and bring it into contact with the metal dome of the
Generator. Turn on the machine with your other hand, and draw the grounded sphere
away until sparks are jumping to it from the Generator dome. Experiment with the
motor control speed of the Generator.

Devise a way to measure the maximum spark length to the discharge ball. How will
you do this, since you cannot simply hold up a meter stick while the Van de Graaff is
sparking?

maximum spark length =

Hold the discharge sphere at the maximum distance for continuous sparking, and esti-
mate the spark frequency. (That is, how many sparks are emitted per second? Use you
watch, the computer, or the Capstone clock to make a time estimate.)

spark frequency =

3. The “breakdown” electric field is 3×106 V/m for dry air. This is the field necessary
to make a spark jump through air — for example, between two metal plates with an
electric field in the air gap.

The Van de Graaff belt delivers charge continuously to the sphere. If there is no discharge
sphere nearby, the potential of the Van de Graaff sphere (its voltage) rises until the
electric field at the surface reaches the breakdown value. Then charge begins to leak
into the air (through a corona discharge, with many small sparks). An equilibrium
potential for the sphere is reached when the leakage rate from the sphere is equal to the
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delivery rate from the belt.

The electric field E at a distance r from a charged sphere (calculated from Gauss’ Law)
is

E = Q/4πε0r
2, (10)

where Q is the charge on the sphere. To find the potential V of the sphere, we integrate
E from r =∞ to r = R (the radius of the sphere):

V = −
∫
E dr = Q/4πε0R. (11)

(We suggest, for purposes of midterm preparation in the lecture part of the course, that
you know how do derive the result above. Getting all the signs correct is somewhat
tedious.) Using the electric field at the surface of the sphere and eliminating Q, we find

V = ER. (12)

Using E = breakdown electric field, and your measured value of R, calculate the potential
V of the sphere.

V =

Advertisements for this type of Van de Graaff Generator typically state that it will
produce voltages as high as 400,000 V. Is this a reasonable value, taking into account
various leakages? What factors might cause the actual potential to be smaller than
calculated?

4. Use your measured maximum spark length and the breakdown electric field to estimate
the potential difference necessary to make a spark jump this distance between two parallel
metal plates.

V =

Is this potential in agreement with your calculated value? How about the advertised
potential?

5. Using your calculated potential, calculate the charge stored on the sphere from

V = Q/4πε0R. (13)

Express your answer as a number between 1 and 999 in coulombs (C) with the appro-
priate prefix, such as m = 10−3, µ = 10−6, n = 10−9, p = 10−12, etc. (It may help to
remember that 1/4πε0 = 9× 109 in SI units.)

Q =

6. The capacitance of a configuration of conductors is defined as C = Q/V . The equation
above can be manipulated to give the capacitance of an isolated sphere as

C = 4πε0R. (14)
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Calculate the capacitance of your Van de Graaff sphere. Express your answer as a
number between 1 and 999 in farads (F) with the appropriate prefix, such as m = 10−3,
µ = 10−6, n = 10−9, p = 10−12, etc.

C =

7. Assume the sphere discharges completely with each spark, and use your measured spark
frequency to calculate the average discharge current (i) while sparking.

i =

Evidently, the discharge rate must be equal to the rate at which the belt is delivering
charge to the sphere. A current of 3 mA is considered the minimum dangerous (possibly
fatal) current. How does your measured current above compare? Would you rate this
Van de Graaff as “safe for student use”? The manufacturer states that the current
delivered by the belt is 10 µA. Does this agree with your estimates? Did we make any
poor assumptions above?

III. LIGHTNING ROD

Equipment

• Van de Graaff Generator

• Grounded discharge sphere

• Wire ring with “lightning rod”

• Insulating stand

Procedure

1. Place the wire ring on top of the Van de Graaff metal dome. Put the grounded sphere
into contact with the dome, turn on the machine, pull the grounded sphere several
centimeters away from the dome, and observe whether any sparks are created.
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2. While the machine is still running, use the grounded sphere to slide the wire ring off the
dome. (Don’t bring your hands near or you will be shocked.) Then hold the grounded
sphere several centimeters away from the dome, and observe whether any sparks are
created.

3. Bring the grounded sphere into contact with the dome again, and turn off the machine.

4. Based on your results, give a clear explanation below of how and why a lightning rod
works.

To Try Hair-Raising (optional)

1. Start with a key or other pointed metal object in your pocket (not absolutely necessary).

2. Stand on the insulating stand so that you can easily reach over to place your hand on
the Van de Graaff dome, but all other parts of your body are one-half meter away from
the benches or other persons.

3. Place your hand firmly on the dome. Have your partner turn on the machine carefully
while not getting too close to you. When the machine is running, you will feel a slight
tingling sensation, but no pain, as the hairs on your arms and legs are raised. Do not
pull your hand away from the dome while the machine is running, or sparks will jump
to your hand as you pull back.

4. After the machine has run for 30 seconds or so, shake your head to loosen your hair, but
do not remove your hand from the dome.

5. When finished, have your partner turn off the machine carefully.

6. Pull your hand away from the dome. Have your partner discharge the dome. If you step
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down immediately, you will get a slight shock (usually not painful). Wait a few moments
until the charge leaks away. Or, take the key or pointed metal object out of your pocket
and hold it up. You will probably hear the charge hissing off it. Bring the point slowly
toward the Van de Graaff base box until you finally touch it with the point. Now all the
charge has been grounded, and you can step down without being shocked.

Hair raising produces widely varying results on different persons and also depends
strongly on the humidity present during the demonstration. It seems to work best on
persons with light, fluffy hair that has been washed recently. Persons with coarse, highly
curly, or oily hair, or hair that has been treated with sprays or gels, do not produce the
more spectacular results.

IV. FARADAY CAGE

This experiment demonstrates the electric-field shielding characteristic of conductors.

Equipment

• Electroscope

• Metal wire cage

• Van de Graaff Generator

• Grounding sphere

Procedure

1. Set the electroscope within approximately half a meter of the Van de Graaff Generator.
Turn on the machine, and observe and record the results.

2. Turn off the machine. Ground its dome and the electroscope so that they are completely
discharged.
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3. Cover the electroscope with the metal wire cage, and repeat step 1. Try moving the cage
even closer to the dome (with an insulated rod!). Is there any deflection? How do you
explain the results?

V. FARADAY ICE PAIL

In the experiments last week, we have shown that a charged rod can induce an opposite charge
on a conductor. In this section, we will show that the induced charge is not only opposite in
sign, but also equal in magnitude, to the inducing charge.

Equipment

• Van de Graaff Generator

• Two conducting spheres, one grounded

• Electroscope with Faraday pail

Procedure

1. Position the electroscope with Faraday pail away from the Van de Graaff Generator.
(When the metal dome of the Generator is charged, an electroscope nearby may deflect
from the electric field of the dome, as you found in the last experiment. This deflection
will end when the dome is discharged. However, on some days charge will actually
move through the air and get on the electroscope, and the electroscope will remain
deflected even after the dome is discharged. In this case, you will need to discharge the
electroscope with your finger, or perhaps you may need to touch both the top electrode
(or pail) and the guard ring of the electroscope with the grounded sphere, to get it
completely discharged before performing the remaining steps.)

2. Run the Van de Graaff Generator for a few moments until its sphere is charged.

3. Hold the ungrounded conducting sphere by its insulating handle, and charge it by mo-
mentarily touching it to the Van de Graaff dome. Discharge the dome. Make sure the
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electroscope is discharged, and lower the small sphere into the pail without touching
the side of the pail with the sphere. The goal is to get the charged sphere into the
pail without a spark jumping between them. If you find this step difficult, start again
as follows: Discharge the insulated sphere and the Van de Graaff dome. Turn the Van
de Graaff motor control down and run it very briefly so when you touch the insulated
sphere to it, the sphere picks up a smaller charge.

4. When you can get the charged sphere into and out of the pail without a spark jumping,
record answers to the following: Is there any deflection while the charged sphere is inside
the pail? When the sphere is removed, is there still any deflection?

5. With the sphere charged, lower it all the way into the pail so that no sparks jump (sphere
completely inside but not touching the bottom). Touch the pail momentarily with your
finger. What happens to the deflection? Remove the sphere, still holding it in your
hand. Record any changes to the deflection.

6. The pail and electroscope are now charged by induction. Lower the sphere into the pail,
let it touch the bottom, and remove it without touching it to the edges as it goes out.
What happens to the deflection? Explain your results.

VI. GAUSS’ LAW

A consequence of Gauss’ Law is that all charge on a conductor moves to the outside surface.
This experiment is very similar to the previous one. You will need two electroscopes, so
borrow one from another group, or work together.

Equipment

• Van de Graaff Generator

• Two conducting spheres, one grounded

• Two electroscopes, one with Faraday pail
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Procedure

1. Position the electroscope with the Faraday pail and the other electroscope away from the
Van de Graaff Generator, and somewhat separated from each other. In the procedures
below, recall the cautions and advice in steps 1 and 3 of the previous experiment.

2. Run the Van de Graaff Generator momentarily until its sphere is charged.

3. Hold the ungrounded sphere by its insulating handle, and momentarily touch it the
Van de Graaff dome. Discharge the dome. Check that both electroscopes show zero
deflection.

4. Bring the charged sphere near, but not touching, the electroscope without the pail. It
should deflect, indicating the presence of charge.

5. Lower the sphere into the pail on the other electroscope until it touches the bottom.
Carefully lift it out without touching the edge of the pail.

6. Bring the sphere near, and into gentle contact with, the top of the other electroscope.
Is there any deflection? What is your conclusion?

7. Now touch the ungrounded sphere to the outside of the pail, and then bring it into
gentle contact with the other electroscope. Can you remove charge from the outside of
the pail?

Additional Credit (3 mills)

When you can perform this experiment well and explain the results clearly, call your TA over
and demonstrate and explain the experiment. He or she will award you 3 mills if you can do
it without significant assistance.
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Note: If the previous week was bad for electrostatics, some experiments may be carried over
to this week.
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Electrical Circuits

APPARATUS

• Computer and interface

• Voltage sensor

• Fluke 8010A multimeter

• Pasco circuit board with two D-cells

• Box with hook-up leads and components

INTRODUCTION

This experiment is an introduction to the wiring of simple electrical circuits, the use of ammeters
and voltmeters, series and parallel circuits, and RC circuits. The circuits will be wired up on the
Pasco circuit board.

BRIEF REVIEW OF DC CIRCUIT THEORY

In a metal conductor, each atom contributes one or two electrons that can move freely through the
metal. An electric current in a wire represents a flow of these electrons. The flow is quite chaotic
since the electrons have a large thermal component to their motion; they are always “jittering”
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around randomly. When a current flows, however, there is a general drift velocity of the electrons
in one direction superimposed on the random motion.

The total charge (which is proportional to the number of electrons) that passes one point in the
circuit per unit time is the current. Current is measured in units of coulombs per second, which is
also known as amperes (with unit symbol A).

An electric field is needed to keep the electrons flowing in the metal (unless the metal is a super-
conductor). This field is normally provided by the chemical action of a cell or battery, or by a DC
power supply. The electric field is the change in the voltage per unit distance. The unit of volt (V)
is also energy per unit charge, or joules per coulomb. Voltage can be viewed as a pressure pushing
the charges through the circuit, and current can be viewed as a measure of the charge that passes
one point in the circuit per unit time.

Normal metals have a resistance to this flow of charges, and thus voltage is needed to maintain the
current. It is found experimentally that for many materials over a wide range of conditions, the
current is proportional to the voltage: i = kV . The symbols i for current and V for voltage are
standard notation. However, we can write k = 1/R and define a new quantity — the resistance R
— measured in ohms (Ω). Ohm’s Law, i = V/R, is not a fundamental law of physics in the same
manner as Coulomb’s Law, but is found to be approximately true in many circumstances. We will
test Ohm’s Law below.

Oftentimes in circuits, we want to reduce or limit the current with resistors. A typical resistor is a
small carbon cylinder with two wire leads. The cylinder is encircled with colored rings which code
its value of resistance. Figure 8 below shows the color code.

RC CIRCUIT THEORY

A capacitor consists of two conductors separated by an insulator (e.g., two parallel metal plates
separated by an air gap).

It is found that when the two plates are connected to a source of DC voltage, the plates “charge
up”, with one becoming negative and the other becoming positive. If the DC voltage is now
disconnected, the charge remains on the plates, but drains off slowly through the air. If the plates
are now shorted by a wire, the charge will neutralize — with a spark and a bang, if the stored
energy is large. A capacitor therefore stores charge and energy. For a given voltage, the capacitor
will store more charge if the area of the plates is larger and/or if the plates are positioned closer
together.
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The equation for the charge in a capacitor is Q = CV : the stored charge Q is proportional
to the voltage V and the capacitance C. Capacitance is a quantity determined by the physical
characteristics of the capacitor, the area and separation of the plates, and the type of insulator.
Capacitance is measured in farads (with unit symbol F): a one-farad capacitor stores one coulomb
of charge at a potential of one volt. The farad is a large unit; most capacitors used in electrical
circuits have capacitances measured in millionths of a farad (microfarads, or µF), billionths of a
farad (nanofarads, or nF), or even trillionths of a farad (picofarads, or pF).

The circuit below would permit charging of the capacitor C by the battery and discharging of the
capacitor through the resistor R.

Let us study the discharging process. When discharging through the resistor, the voltage across
the capacitor is V = −iR. (The negative sign indicates that the capacitor voltage is opposite the
resistor voltage.) However,

i = dQ/dt = C dV/dt (from Q = CV ), (1)

so we have

V = −iR = −RCdV/dt, (2)

or

dV/V = −dt/RC. (3)

The equation above integrates to V = V0e
−t/RC , where V0 is the voltage at t = 0. The voltage

on the discharging capacitor decreases exponentially with time, and its exponential slope is 1/RC.
We will find the exponential slope for an RC circuit below by using the curve fitting features of
Capstone.
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MULTIMETER

A multimeter is an important tool for anyone working with electrical circuits. A typical multimeter
has different scales and ranges for voltage, current, and resistance. Some multimeters will also
measure other quantities such as frequency and capacitance. In this experiment, we will be using
the Fluke 8010A digital multimeter.

Take a moment to study this instrument. The green push-button power switch is at the lower
right. The left-most button changes the measurements between AC and DC (alternating and
direct current). This button should be out, as all of our measurements for this experiment are in
DC.

To measure voltages, press the “V” button, and connect your test leads to the “common” and
V/kΩ/S sockets. Push in a button for the appropriate scale: 2 V or 20 V in this experiment. To
measure resistances, use the “kΩ” button and an appropriate scale. (Here kΩ represents thousands
of ohms.)

You must be careful when measuring currents. Double-check your circuit when using the current
meter. The meter must be hooked into the circuit so the current flows through the meter. The
test leads are connected to the mA (milliampere) and common sockets. Before hooking the meter
into the circuit, estimate first whether you expect the current to exceed 2 A. The meter has a 2-A
fuse which will “blow” if this current is exceeded. All of our circuits below use smaller currents,
provided they are wired correctly.

HOOKING UP WIRES

Connections are made on the circuit board by pushing a stripped wire or lead to a component into
a spring. For maximum effect, the striped part of the wire should extend in such a way that it
passes completely across the spring, making contact with the spring at four points. This extension
produces the most secure electrical and mechanical connection.
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If the spring is too loose, press the coils firmly together to tighten it up. The coils of the spring
should not be too tight, as this may result in the bending or breaking of the component leads when
they are inserted or removed. If a spring is pushed over, light pressure will straighten it back up.

MAKING A SWITCH

Use a vacant spring connection (such as one of the three around the transistor socket, as shown
below) for a switch.

Connect one lead from the battery to this spring, and take a third wire from the spring to the light.
You can now switch the power “on” and “off” by connecting or disconnecting the third wire.

PROCEDURE

For each of the circuits below (except the first), discuss the circuit with you lab partner and agree
upon a design. Then sketch the circuit neatly on a blank piece of paper using standard electrical
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symbols. Finally, hook up the circuit on the circuit board.

To be checked off as completing this experiment, your TA will glance at all your circuits, notes,
and data, and look closely at the graphs of circuits 7 and 8.

• CIRCUIT 1: CHECK YOUR COMPUTER VOLTAGE SENSOR

Plug a voltage sensor (just a pair of leads connected to a multi-pin socket) into the Science
Workshop interface, turn on the interface and computer, call up Capstone and choose “Graph
& Digits”. Under “Hardware Setup”, click on channel A and select “Voltage Sensor”. Click
the “Select Measurement” button in the digits box and select “Voltage (V)”.

In certain applications below, it is useful to have an analog meter on the computer screen
linked to the voltage sensor. This permits you to determine quickly whether a voltage is
present and what its approximate size is. This can be found at the right of the screen.

For certain measurements below, it is also useful to stick alligator clips onto the banana plug
ends of the voltage sensor. You can clip the alligator jaws carefully to the spring connections.

Check the voltage of one D-cell with both the voltage sensor and the digital multimeter to
make sure the readings are in reasonable agreement. Record these readings. (Label your
notes and circuit diagrams with the circuit number, 1 in this case.)

• CIRCUIT 2: SINGLE BULB WITH VOLTMETER AND AMMETER

Design a circuit that will light a single light bulb with a single D-cell through a switch. (See
“Making a Switch” above.) Try out the circuit and check that it works.

Use the digital multimeter on a milliammeter scale, and wire it in series with the light bulb
to measure the current flowing through the bulb. An ammeter must always be in series with
the component whose current is being measured.

Connect the leads of the voltage sensor across the light bulb to measure its voltage. A
voltmeter must always be in parallel with the component whose voltage is being measured.

Record the current and voltage of the bulb, compute its power P = V i and resistance R = V/i,
and record P and R in your notes below the circuit diagram.
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• CIRCUIT 3: ADD A POTENTIOMETER

Rearrange your circuit so that you add a potentiometer in series with the light bulb whose
current and voltage are still being measured. First, sketch the circuit in your notes. The
potentiometer is the circular component with the screwdriver slot control (see Figure 1). Use
the middle lead of the potentiometer and one of the end leads.

Experiment with controlling the brightness of the bulb while observing the ammeter and
voltmeter readings. (No data need be taken.)

• CIRCUIT 4: BULBS IN PARALLEL

Design and wire up a circuit that will light all three bulbs in parallel. You may use one or
both D-cells. Measure and record the battery voltage and the voltage across each bulb.

Measure and record the current to each bulb separately, as well as the total current output
of the battery. (Although the bulbs are labeled identically as #14 bulbs, their electrical
characteristics may vary up to 30%, owing to relatively large variations allowed by the man-
ufacturer.) One consequence of Kirchhoff’s Current Law is that the sum of the currents of
several components in parallel must be equal to the total current. Compare the sum of the
three individual currents with the total current. Enter the comparison clearly in your notes
below the data and circuit for this part. Upon what fundamental law of physics is Kirchhoff’s
Current Law based?

• CIRCUIT 5: BULBS IN SERIES

Design and wire up a circuit that will light all three bulbs in series with both D-cells in series.
Measure and record the current output of the battery. What would you expect to obtain if
you measured the current to each bulb?

Measure and record the voltage across each bulb separately, as well as the total voltage of
the battery. One consequence of Kirchhoff’s Voltage Law is that the sum of the voltages of
several components in series must be equal to the total voltage. Compare the sum of the
three individual voltages with the total voltage. Enter the comparison clearly in your notes.
Upon what fundamental law of physics is Kirchhoff’s Voltage Law based?

For Circuit 4, you should have entered in your notes the measured individual currents to each
bulb and the measured total battery current; and for Circuit 5, similar entries for the voltages.
Your current comparison may show a difference of 10% or more. Some meters on the current
setting have significant internal resistance of their own (partly because of the fuse), so they
actually reduce the current to the component when wired into the circuit. On the voltage
settings, however, the meters do not change the circuit voltages significantly when they are
wired in, so your voltage comparison should agree quite closely.

Keep your parts in the order shown. After finishing the experiments, put all parts back in
their proper slots.
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• CIRCUIT 6: ADDITIONAL CREDIT (1 mill)

Devise a circuit that will light two bulbs at the same intensity, but a third bulb at a different
intensity. Try it. If one lab partner has been doing all the wiring on the circuit board, change
tasks now so that both partners gain experience in wiring a circuit. When successful, draw
the circuit diagram in your notes. Indicate what happens when you unscrew each bulb, one
at a time. Your TA will award the mill when he or she checks your notes at the end of the
lab.

• CIRCUIT 7: OHM’S LAW

Choose one of the three resistors. Using the chart below, decode the values of the resistance
and tolerance range of the resistor, and record them. Measure and record the resistance
directly with your multimeter. Is the measured value within the tolerance range of the coded
value?
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Wire up the voltage divider circuit shown below on your circuit board with your chosen
resistor in position R.

The element R is the resistor to be tested, the element mA is the multimeter on the mil-
liampere scale, and the element ABC is the potentiometer, with B the middle connection
(i.e., the sliding contact of the potentiometer). For the position of the potentiometer on your
circuit board, see Figure 1. As you turn the potentiometer knob, the sliding contact B moves
along the resistance of the potentiometer, allowing you to pick any voltage from zero to the
full battery voltage V . This circuit permits you vary the voltage to the chosen resistor with
the potentiometer, and to measure the voltage and current to it. Does it make any difference
if its resistance R is much larger or much smaller than that of the potentiometer? Your TA
may award you a mill or two for a well-reasoned discussion of this point.

Set your computer to take data in a table of voltage from the voltage sensor while you input
the current reading of the ammeter as a keyboard entry. To do this, Click on “Continuous
Mode” at the bottom of the screen and change this to “Keep Mode”. Drag a new table over
from the right side of the screen. select “Voltage (V)” for the first column. For the second
column, click on “Select Measurement”. Under “Create New”, Choose “User-Entered Data”
and then change the title to “current”. Take data every 0.5 V between 0 V and 3 V by
clicking the “Keep Sample” button. Remember to record the current (with units) for each
voltage data point you keep.

Graph the data of V as a function of i in Capstone or Excel. Create a best-fit line and record
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the slope. Compare the slope (R = V/i) with your previously measured value of R. (You
should have three entries of resistance compared in your notes: the “nominal” value read
from the color code, the value measured by the multimeter, and the value determined from
the slope of your graph.)

• CIRCUIT 8: RC CIRCUIT

Use the color-code chart above to locate a 100-kΩ (100,000-ohm) resistor. Measure and
record its resistance with the ohmmeter scale of the multimeter. Wire (all in series) a D-cell,
a switch, the 100-kΩ resistor, and the 100-µF capacitor, as in Figure 10 below. Connect the
leads of the voltage sensor across the capacitor. Call up a meter scale linked to the voltage
sensor on the computer screen, and set its limits to ± 2 V (to do this, click the “properties”
button and then adjust “Meter Scale”). Make sure you are in “Continuous Mode” and not
“Keep Mode”.

With the switch open, briefly short the terminals of the capacitor to drain any residual charge.
(Touch the capacitor leads simultaneously with the two leads of a loose wire.)

Click “Record”, close the switch, and observe the charging of the capacitor on the screen
meter. When the capacitor is charged up to nearly the full battery voltage, open the switch.
The capacitor should remain at its present voltage, with a very slow drop over time. This
indicates that the charge you placed on one of the capacitor plates has no way to move over
and neutralize the opposite charge on the other plate.

Click “Stop”. Prepare the computer to take data in a table of voltage as a function of time.
At the bottom of the screen, set the sampling rate at 2 Hz. (The interface will then take a
voltage reading every 0.5 second.) Close the switch, charge the capacitor to about 1.5 V, and
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switch the battery “off”. Click “Record”, and connect points A and C with a lead so the
capacitor discharges through the resistor. Take data until the voltage of the capacitor drops
below 0.05 V. Graph this data in Capstone or Excel. There may be a short section of curve
at the beginning, before you completed the RC circuit, where the charge is decreasing very
slowly, and then a more rapid decrease as the capacitor discharges through the resistor.

We now want to determine the exponential slope of the curve: that is, to find the parameter
“a” in a curve fit of e−at. Click the “Highlight range of points...” button on top of the graph.
A selection box will appear. Drag this box over the data of interest and then click inside the
box to highlight the data. Click the “Apply selected curve fits...” button and choose “Natural
Exponential”. the inverse of “a” should be RC. Make sure your graph is titled and the axes
are labeled. Beneath the graph, compare the experimentally determined value of RC with
that obtained from the product of the measured resistance and the nominal capacitance.

• CIRCUIT 9: TRANSISTOR (additional credit up to 5 mills)

This is a complicated additional credit assignment. Get yourself checked off on the rest of
the experiment before starting it.

Transistors were probably not covered in class, so here is a brief introduction. A junction
transistor has three connections: emitter, base, and collector.

Basically, a small current at the base controls a large current flowing in the emitter-collector
circuit. For example, a small signal from a microphone input at the base can control a large
current to a speaker. The transistor can therefore operate as an amplifier.
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You don’t get something for nothing; the large working current in the collector circuit must
be supplied by an external source (in this case, the battery). The circuit above is barely
functional. Normally, there would be resistors in the circuit to set the operating voltages of
the transistor, capacitors to isolate the DC of the battery, and so forth. A stereo amplifier
would have many amplification stages, with feedback and other arrangements to ensure that
the amplification is linear (i.e., that the output is a faithful copy of the input, only larger).

A transistor can also operate as a switch. A small current at the base can switch on or off
a larger current flowing in the emitter-collector circuit. A computer has thousands, perhaps
millions, of transistors printed microscopically small on tiny circuit boards enclosed in the
“chips” performing this function.

In this additional credit assignment, we will study the amplification property of a transistor.
(Refer to the instructions below and the diagram on the following page.)

1. Wire up the circuit of Figure 13 on your circuit board. Use R1 = 1000 Ω and R2 = 100
Ω. Be sure your transistor is oriented as shown in the picture and connected properly.
Also, double check the battery polarities; the short bar in the battery symbol is the
negative terminal. Transistors are easy to burn out.

2. Wire your multimeter on the millivolt scale to measure the voltage across R1, and the
computer voltage sensor to measure the voltage across R2 on a digital scale to two places
after the decimal (hundredths of a volt). By dividing these voltages by their respective
resistances, you can determine the current flowing in the base circuit and the collector
circuit.

3. Prepare a data table in your notes (or use Excel) with at least four columns and 20 rows.
We will take data for VAB and VCD, and compute their respective currents.

4. By adjusting the potentiometer, set VAB to the readings below, and record the corre-
sponding VCD in the table: VAB = 0, 0.002, 0.006, 0.010, 0.015, 0.020, 0.025, 0.030,
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0.035, 0.040, 0.045, 0.050, 0.055, 0.060, 0.080, 0.100, 0.150, 0.200, 0.250 V.

5. Calculate the corresponding currents.

6. Plot a graph of the collector current as a function of the base current. If you find areas
where more points are needed to fill out any curves or sudden changes, return to step 4
and make the appropriate measurements.

7. What is the general shape of the graph? Is there a straight-line region? Does it pass
through the origin? Why or why not? Electronic engineers refer to the region of the
curve where the collector current levels off as the transistor being saturated. At what
current does this transistor saturate? What determines the saturation current?

8. The slope of the straight-line region is the current amplification of the transistor. De-
termine and record the current amplification.
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